Unequal homologous recombination of human DNA on a yeast artificial chromosome.
نویسندگان
چکیده
We examined unequal homologous DNA recombination between human repetitive DNA elements located on a yeast artificial chromosome (YAC) and transforming plasmid molecules. A plasmid vector containing an Alu element, as well as a sequence identical to a unique site on a YAC, was introduced into yeast and double recombinant clones analyzed. Recombination occurs between vector and YAC Alu elements sharing as little as 74% identity. The physical proximity of an Alu element to the unique DNA segment appears to play a significant role in determining the frequency with which that element serves as a recombination substrate. In addition, cross-over points of the recombination reaction are largely confined to the ends of the repetitive element. Since a similar distribution of crossover sites occurs during unequal homologous recombination in human germ and somatic tissue, we propose that similar enzymatic processes may be responsible for the events observed in our system and in human cells. This suggests that further examination of the enzymology of unequal homologous recombination of human DNA within yeast may yield a greater understanding of the molecular events which control this process in higher eukaryotes.
منابع مشابه
Meiotic recombination and segregation of human-derived artificial chromosomes in Saccharomyces cerevisiae.
We have developed a system that utilizes human DNA-derived yeast artificial chromosomes (YACs) as marker chromosomes to study factors that contribute to the fidelity of meiotic chromosome transmission. Since aneuploidy for the YACs does not affect spore viability, different classes of meiotic missegregation can be scored accurately in four-viable-spore tetrads including precocious sister separa...
متن کاملIntegrative selection of human chromosome-specific yeast artificial chromosomes.
Human specific "integrative selection vectors" (ISVs) were designed to optimize integration of a yeast-selectable marker specifically into yeast artificial chromosomes (YACs) derived from human but not mouse DNA. ISVs were transformed into a YAC genomic library constructed from DNA of a human-mouse somatic cell hybrid containing chromosome 21 (HSA21) as the only human chromosome. One percent of...
متن کاملDevelopment of an Alu-PCR Amplified YAC Probe Suitable for Enumeration of Chromosome 13 on Uncultured Lymphocytes and Amniocytes by Fluorescence in situ Hybridization
The main objective of the present study was to develop an efficient and reliable probe to be routinely used for detection of chromosome 13 copy numbers by interphase FISH. To achieve this, a Yeast Artificial Chromosome (YAC) containing sequences specific for human 13q12 (744D11), was cultured and the whole yeast genomic DNA was extracted. The human insert within the isolated DNA was amplified b...
متن کاملGenetic properties of chromosomally integrated 2 mu plasmid DNA in yeast.
We obtained strains of yeast with large segments of 2 mu plasmid DNA integrated at several chromosomal locations by selecting genetically for recombination between a chromosomal sequence carried on a 2 mu-circle-containing hybrid plasmid and a homologous sequence on the chromosome. In all diploids examined, the presence of 2 mu circle sequences causes a marked instability of the chromosome into...
متن کاملStabilization of yeast artificial chromosome clones in a rad54-3 recombination-deficient host strain.
The cloning and propagation of large fragments of DNA on yeast artificial chromosomes (YACs) has become a routine and valuable technique in genome analysis. Unfortunately, many YAC clones have been found to undergo rearrangements or deletions during the cloning process. The frequency of transformation-associated alterations and mitotic instability can be reduced in a homologous recombination-de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic acids research
دوره 23 18 شماره
صفحات -
تاریخ انتشار 1995